Are stop codons recognized by base triplets in the large ribosomal RNA subunit?

نویسندگان

  • Han Liang
  • Laura F Landweber
  • Jacques R Fresco
چکیده

The precise mechanism of stop codon recognition in translation termination is still unclear. A previously published study by Ivanov and colleagues proposed a new model for stop codon recognition in which 3-nucleotide Ter-anticodons within the loops of hairpin helices 69 (domain IV) and 89 (domain V) in large ribosomal subunit (LSU) rRNA recognize stop codons to terminate protein translation in eubacteria and certain organelles. We evaluated this model by extensive bioinformatic analysis of stop codons and their putative corresponding Ter-anticodons across a much wider range of species, and found many cases for which it cannot explain the stop codon usage without requiring the involvement of one or more of the eight possible noncomplementary base pairs. Involvement of such base pairs may not be structurally or thermodynamically damaging to the model. However, if, according to the model, Ter-anticodon interaction with stop codons occurs within the ribosomal A-site, the structural stringency which that site imposes on sense codon.tRNA anticodon interaction should also extend to stop codon.Ter-anticodon interactions. Moreover, with Ter-tRNA in place of an aminoacyl-tRNA, for each of the various Ter-anticodons there is a sense codon that can interact with it preferentially by complementary and wobble base-pairing. Both these considerations considerably weaken the arguments put forth previously.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mechanism for stop codon recognition by the ribosome: a bioinformatic approach.

Protein synthesis in ribosomes requires two kinds of tRNAs: initiation and elongation. The former initiates the process (formylmethionine tRNA in prokaryotes and special methionine tRNA in eukaryotes). The latter participates in the synthesis proper, recognizing the sense codons. Synthesis is also assisted by special proteins: initiation, elongation, and termination factors. The termination fac...

متن کامل

The involvement of base 1054 in 16S rRNA for UGA stop codon dependent translational termination.

The deletion of the highly conserved cytidine nucleotide at position 1054 in E. coli 16S rRNA has been characterized to confer an UGA stop codon specific suppression activity which suggested a functional participation of small subunit rRNA in translational termination. Based on this structure-function correlation we constructed the three point mutations at site 1054, changing the wild-type C re...

متن کامل

The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites.

With a stepwise degradation and terminal labeling procedure the 3'-terminal sequence of E. coli 16S ribosomal RNA is shown to be Pyd-A-C-C-U-C-C-U-U-A(OH). It is suggested that this region of the RNA is able to interact with mRNA and that the 3'-terminal U-U-A(OH) is involved in the termination of protein synthesis through base-pairing with terminator codons. The sequence A-C-C-U-C-C could reco...

متن کامل

Characterization of Mutations in the Rpob and Katg Gene of Mycobacterium Tuberculosis Isolates From Pasteur Institute of Tehran

Objective: The Rifampicin resistance and susceptibility of Mycobacterium tuberculosis are caused by mutations in the 81-base pair region of the rpoB gene encoding the b-subunit of RNA polymerase. Methods: Isoniazid resistance of M. tuberculosis is related to mutations in inha , oxyR and ahpC genes which 30 to 90 percent of Isoniazid resistance is occurred in 3015 codons of kat...

متن کامل

Characterization of Mutations in the Rpob and Katg Gene of Mycobacterium Tuberculosis Isolates From Pasteur Institute of Tehran

Objective: The Rifampicin resistance and susceptibility of Mycobacterium tuberculosis are caused by mutations in the 81-base pair region of the rpoB gene encoding the b-subunit of RNA polymerase. Methods: Isoniazid resistance of M. tuberculosis is related to mutations in inha , oxyR and ahpC genes which 30 to 90 percent of Isoniazid resistance is occurred in 3015 codons of kat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • RNA

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 2005